

Study on throughput-based congestion control of
MPTCP and schedulers for WeBQoE improvement

Ennouhe Taleb*, Ito Yoshihiro and Takeshi Kato

1Nagoya Institute of Technology, Nagoya, Japan.

Accepted 9 October, 2024

ABSTRACT

This study proposes a new congestion control scheme for multi-path TCP to improve the user experience of
Web services (WebQoE). It then studies its combination with a scheduler to suppress QoS fluctuations in
MPTCP by experiment. The experimental results show that the proposed scheme suppresses throughput
fluctuations, i.e., QoS fluctuations, better than existing MPTCP congestion control schemes in various
environments, confirming the effectiveness of our proposal. The results also show that QoS fluctuations can
be suppressed by combining a scheduler that suppresses RTT fluctuations with congestion control in specific
environments.

Keywords: MPTCP, WebQoE, TCP, RTT, QoS.

*Corresponding author. E-mail: cmm14064@ict.nitech.ac.jp.

INTRODUCTION

Nowadays, electronic gadgets have multiple network
interfaces and can connect to the Internet using 4G, 5G,
or wireless LAN. However, TCP (Postel, 1981), the primary
transport layer protocol in the TCP/IP protocol, can only
handle one path per connection, making it impossible to
use them effectively. Therefore, it is beneficial to create
multiple paths at the same time. Thus, next-generation
transport layer protocols such as SCTP (Stream Control
Transmission Protocol) (Stewart, 2007) and MPTCP
(Multi-Path TCP) (Ford et al., 2013) that can use multiple
paths simultaneously are being standardized. SCTP is
incompatible with TCP among such next-generation
protocols, and its adoption will require much time and cost.
On the other hand, MPTCP is an extension of TCP that
uses TCP header options and is highly compatible with
TCP. Therefore, we are focusing on MPTCP in this study.
MPTCP enables the simultaneous use of multiple paths
using multiple TCP flows, called sub-flows, for a single
connection. This allows multiple paths and can improve the
quality of service (QoS) compared to TCP. On the other
hand, the QoS provided by MPTCP at the transport layer

affects WebQoE (Quality of Experience for Web services).
Muraki and Ito (2015) shows that, even if a high QoS is
provided, high QoS fluctuation degrades WebQoE. Thus,
a previous study (Noda and Ito, 2018) has proposed a new
MPTCP congestion control scheme that suppresses QoS
fluctuation to improve WebQoE. The method proposed in
Noda and Ito (2018) uses RTT as a criterion of QoS, but
either the throughput or the packet loss rate can also be
considered parameters. The throughput especially
significantly impacts WebQoE more than RTT because
Web services may often send a large amount of traffic. In
this paper, we first propose a new MPTCP congestion
control that suppresses QoS fluctuations based on the
throughput and then confirms its effectiveness through
actual experiments. However, we know that the factors
that significantly affect the QoS provided by MPTCP are
congestion control (Welzl, 2005) and the scheduler that
selects paths ("Multi-Path TCP," n.d.), the combination of
which significantly impacts QoS. Second, this paper
proposes a new congestion control scheme that uses the
QoS of throughput as a parameter and suppresses the

African Journal of Engineering Research
Vol. 12(2), pp. 12-19, October 2024

ISSN: 2354-2160
DOI: 10.30918/AJER.122.24.012

Full Length Research Paper

Taleb et al. 13

fluctuation of QoS to improve WebQoE. It then investigates
the effectiveness of congestion control combined with a
scheduler. Secondly, this study treats the congestion
control of the first part and investigates the combination
with an optimal scheduler that can suppress QoS
fluctuations by experiment.

MPTCP

Outline

MPTCP is one of the next-generation transport layer
protocols. MPTCP connections can utilize multiple TCP
flows, called sub-flows, simultaneously using multiple
paths. Like TCP, MPTCP has window-based congestion
control. MPTCP is being standardized as one of the next-
generation transport layer protocols to solve the
shortcomings of TCP. MPTCP uses multiple TCP flows,
called sub-flows, allowing multiple routes to be used
simultaneously. This will enable MPTCP to increase the
available bandwidth compared to TCP, improve availability,
and achieve a higher quality of service. Like TCP, MPTCP
uses a three-way handshake to establish connections.
However, MPTCP's three-way handshake is accompanied
by the MPCAPABLE option to check whether the peer
supports MPTCP. The communication is performed using
standard TCP if the peer does not support MPTCP. Since
MPTCP is a transport layer protocol, its congestion control
significantly affects WebQoE 2 (Muraki and Ito, 2015). The
current congestion controls for MPTCP can be categorized
into loss-based and delay-based ones. For example, loss-
based controls are LIA (Raiciu et al., 2011), OLIA (Khalili
et al., 2011), and delay-based WVEGAS (Cao et al., 2012).
The control proposed in this study is a delay-based one.
MPTCP has two factors: congestion control and a
scheduler, which work as follows: MPTCP receives data
from an application, divides it into sub-flows, and
distributes the divided data to each sub-flow using the
scheduler. Each sub-flow sends the data distributed by the
scheduler based on congestion control. In MPTCP, the
scheduler and congestion control are closely related. For
example, suppose the scheduler allocates data to a sub-
flow whose congestion window size has been reduced by
congestion control or to a sub-flow with no available
congestion window. In that case, it may increase
congestion or prevent efficient communication.

Congestion control

Like TCP, MPTCP has congestion control using a
congestion window, which is variable. However, MPTCP's
congestion control still differs from TCP's in that each sub-
flow has its own congestion window. Currently, typical
congestion control schemes for MPTCP include loss-

based schemes such as LIA (Linked Increases Algorithm)
(Raiciu et al., 2011), OLIA (Opportunistic Linked Increases
Algorithm) (Khalili et al., 2011), and delay-based methods
such as WVEGAS (Weighted VEGAS) (Cao et al., 2012).

Scheduler

When multiple sub-flows are available, MPTCP must
select which sub-flow to send data to; the packet scheduler
makes this selection. Currently, MPTCP has a default
scheduler that determines the sub-flow with the smallest
RTT, a round-robin scheduler that redundantly selects
available sub-flows in order, and a redundant scheduler
that selects the traffic of available sub-flows. Reference
(Noda and Ito, 2019) also proposes a scheduler that
suppresses RTT fluctuations and confirms its
effectiveness by experiment.

PROPOSAL

This control is based on (Noda and Ito, 2018). This method
uses the throughput instead of RTT as a QoS parameter
and estimates it. We show our proposed control as follows:
Firstly, a sender estimates the mean throughput after
entering congestion avoidance (Stevens, 1997). Here, the
following equation is used to estimate throughput:

Throughput is the estimated throughput, cwnd is the
congestion window size, MSS is the maximum segment
size, and RTT is the time between sending a segment and
receiving an ACK. Secondly, the estimated throughput is
compared with the mean. If Throughput is greater than the
mean, the cwnd is decreased. And if Throughput is less
than the mean, the cwnd is increased. The cwnd is
controlled by:

(2)

However, two main points can be noted: we can confirm
that TSN standards helped improve the overall QoS of the
network when implemented, as all the QoS-controlled
traffic has lower latency except for one (Traffic 2). Where
α and β represent the amount of increase and decrease
for cwnd, respectively, and γ adjusts the degree of
throughput fluctuation. If we increase cwnd, throughput will
be higher; if we decrease cwnd, throughput will be lower.
Moreover, MeanTh indicates an estimation of the mean

Throughput =
݀݊ݓܿ ܵܯܯ∗

ܴܶܶ (1)

݀݊ݓܿ = ൞

݀݊ݓܿ − ߙ
(ܶℎ݃ݑ݋ݎℎݐݑ݌ > ℎܶ݊ܽ݁ܯ + × ߛ (ℎܶ݊ܽ݁ܯ

+ ݀݊ݓܿ ߚ
(ܶℎ݃ݑ݋ݎℎݐݑ݌ < ℎܶ݊ܽ݁ܯ − × ߛ (ℎܶ݊ܽ݁ܯ

Afr J Eng Res 14

throughput. The user specifies the values of α and β. By
changing α and β, it is possible to adjust the degree of
congestion window control for each communication
according to the type of service.

EXPERIMENTS

Outline

Two experiments are conducted. They are referred to as
Experiment A and Experiment B, respectively. Experiment
A tests the MPTCP congestion control method by
measuring the throughput and RTT in different
environments. The environments are referred to as Env1
through Env6. Experiment B combines the
abovementioned MPTCP’s congestion control method
with a scheduler and studies the outcome.

Experiment A

Figure 1 indicates the network environment of Experiment
A. Note that Experiment B also uses the same network
environment. It consists of a Web server, a Web client,
three network emulators, and two pairs of Load servers
and Load clients. As a target Web service, we adopt a map
service widely used worldwide, such as Google Maps. The
Network Emulator adds delay and packet losses to
packets that pass through it, thus creating an environment
where the communication quality of each route is uniform
and heterogeneous. The subject is accessing Web service
through a Web client. The Web server and Web client are
connected via a network emulator. Table 1 shows the
parameter values of the network emulators. Since this
study aims to confirm whether the proposed method can
suppress throughput fluctuations in any environment, we
also check the necessary values to suppress the
fluctuation by changing the values of α and β. Table 2
shows that we also congest each route by generating TCP

traffic between the Load client and the Load server. In this
experiment, we confirm the effectiveness of the proposed
method by comparing it with existing MPTCP congestion
controls, such as LIA, OLIA, and WVEGAS, the proposed
method, and the congestion control defined in Noda and
Ito (2018). The QoS parameters to be measured are
throughput and RTT.

Figure 1. Experimental environment.

Table 1. Parameters values of network emulators.

 Bandwidth Packet loss rate Delay
Env1, Env2, Env3
Path1 100 Mb/s 3% 50 ms
Path2 100 Mb/s 3% 50 ms

Env4, Env5, Env6
Path1 100 Mb/s 1% 100 ms
Path2 100 Mb/s 3% 50 ms

Table 2. Number of TCP connections.

Env1 Env2 Env3 Env4 Env5 Env6
10 20 10 ~20 10 20 10 ~20

Result of Experiment A

Figures 2 and 3 show the results of Experiment A. In these
figures, the abscissa plots the experimental environment,
and the ordinates indicate the variance of the throughput,
the mean throughput, the variance of the RTT, the mean

RTT, and the mean of the RTTs. From Figure 2(a), we see
that the proposed method can suppress the throughput
fluctuation compared to existing MPTCP congestion
controls in environments where the communication quality
of each route is uniform. Moreover, we also find that the
throughput is kept low in Figure 2(b). A trade-off exists

Taleb et al. 15

between improving QoS and suppressing QoS fluctuations
in Noda and Ito (2018). Therefore, the proposed scheme
can also suppress throughput fluctuation by keeping the
throughput low. Also, by adjusting α and β in Equation 2,
congestion control can be performed with appropriate
control for the communication volume, thereby controlling
the fluctuation. For example, in environment 1, setting α to
1 and β to 5 will lead to more suppression of fluctuations.
Similarly, it was found that throughput fluctuations can be
suppressed in heterogeneous environments with different
communication quality. From Figure 3, we recognize that

the proposed method also suppresses RTT fluctuations
compared to existing MPTCP congestion control methods
in an environment where the communication quality of
each route is uniform. The RTT is kept low, indicating a
trade-off between the average RTT and the suppression of
RTT fluctuation. Similarly, the proposed scheme can
suppress RTT fluctuations even in heterogeneous
environments with different communication quality,
compared to the congestion control scheme in Noda and
Ito (2018), which suppresses RTT fluctuations.

Figure 2. Variance and mean throughput from Env1 to Env3.

Afr J Eng Res 16

Figure 3. Variance and mean of RTT from Env1 to Env3.

Experiment B

This experiment treats the congestion control of
Experiment A and investigates its combination with an
optimal scheduler that can suppress QoS fluctuations. In
the experimental environment, two paths are provided
between the Web client and the Web server for MPTCP
communication. The network emulator acts as a router and
changes the communication quality of each route by
adding delay and packet losses to packets passing
through it. In addition, the network emulator creates a
uniform environment in which the quality of communication

is the same for each route and various environments in
which the quality of communication is different for each
route. These six environments are shown in Table 1. For
convenience, the experimental environment is named
Env1 through Env6. The network emulator used is
Dummynet (Rizzo, n.d.). The load clients and load servers
send and receive TCP traffic to congest each route. The
traffic is handled by a benchmark application, auto-bench
("Autobench," n.d.). The experiment uses the map search
service ("Google," n.d.) as the Web service. For
congestion control, the Web server uses the congestion
control of the first study, and the Web client utilizes LIA,

Taleb et al. 17

which is a standard for MPTCP congestion control. In this
experiment, we employ four schedulers: a default
scheduler, a round-robin scheduler, a redundant scheduler,
and one similar to the scheduler from Noda and Ito (2019).
This study defines these schedulers as default, round-
robin, redundant, and RTTS.

Result of Experiment B

Figures 4 through 7 show the results of Experiment B. In
each figure, the abscissa represents the environment. The
ordinates in Figures 4 and 5 indicate the standard
deviation of throughput, while those in Figures 6 and 7
represent the mean of throughput.

First, Figures 6 and 7 indicate the standard deviation of
the throughput when congestion control is combined with
multiple packet schedulers. Figures 4 and 5 show that
RTTS exhibits the lowest throughput variability in all six
environments compared to the existing MPTCP packet
scheduler. This means that throughput fluctuations are
reduced by using RTTS in all environments. Consequently,
the congestion control proposed in the first study can
suppress throughput fluctuations more when used with the
schedule (Noda and Ito, 2019). This is because the
scheduler suppresses RTT fluctuations, reducing the

variation in the number of packets received in a unit of time,
resulting in less throughput variation. The results of the
mean throughput are plotted in Figures 5 and 6. These
results mean that throughput is lower when the scheduler
is RTTS. The results of the variance and the mean of the
throughput decrease with the reduction of the variance of
the throughput, suggesting a trade-off between the
reduction of the variance of the throughput and the mean
of the throughput. RTTS preferentially selects the sub-flow
with the least congestion to transmit data, resulting in lower
throughput. The above confirms that congestion control
that suppresses fluctuations in throughput can be
combined with a scheduler that suppresses fluctuations in
RTT rather than an existing packet scheduler to suppress
fluctuations in QoS. The lower throughput indicates a
trade-off between suppressing the fluctuation of the
throughput and the mean of the throughput. This means
that while it is necessary to keep the throughput low to
suppress the fluctuation of the throughput, a very low
throughput may lead to a decrease in WebQoE.
Consequently, it is essential to evaluate QoE through
actual subjective experiments, congestion controls, and
schedulers that can control the throughput so that it does
not become too low while suppressing the fluctuation of
the throughput.

Figure 4. Standard deviation of throughput (Env1 through Env3).

Afr J Eng Res 18

Figure 5. Standard deviation of throughput (Env4 through Env6).

Figure 6. Mean of throughput (Env.1 through Env3).

Taleb et al. 19

Figure 7. Mean of throughput (Env.4 through Env6).

CONCLUSION

This study proposed a new MPTCP congestion control that
suppresses QoS fluctuations based on throughput instead
of RTT. We evaluated the QoS through experiments, and
the experimental results proved the effectiveness of our
proposal by showing that the proposed method can
suppress throughput fluctuation by keeping the throughput
low and suppressing throughput fluctuations in
heterogeneous environments. Furthermore, we studied
which packet scheduler can suppress QoS fluctuation by
combining that congestion control with experimentation.
The experimental results show that a congestion control
that suppresses the fluctuation of the throughput can
suppress QoS fluctuation combined with a scheduler that
suppresses RTT fluctuations rather than an existing packet
scheduler to suppress fluctuations in QoS. It was also
observed that a low throughput can suppress the
fluctuation; too low throughput can decrease the Quality of
the Web user’s Experience. Therefore, in our future work,
we will assess QoE and confirm whether the combination
shown in this study improves WebQoE. We will also
evaluate QoS in various environments and services.

REFERENCES

Autobench (n.d.). http://www.xenoclast.org/autobench/
Cao, Y., Xu, M., & Fu, X. (2012). Delay-based congestion control for

multipath TCP. In Proceedings of the IEEE 20th International
Conference on Network Protocols (ICNP) (pp. 1-10).

Ford, A., Raiciu, C., Handley, M., & Bonaventure, O. (2013). TCP
extensions for multipath operation with multiple addresses. IEEE RFC
6824 (Experimental).

Google. (n.d.). https://www.google.co.jp/maps.
Khalili, R., Gast, N., Popovic, M., Upadhyay, U., & Le Boudec, J.-Y. (2011).

MPTCP is not Pareto optimal: Performance issues and a possible
solution. In Proceedings of the 8th International Conference on
Emerging Networking Experiments and Technologies (pp. 1-12). New
York, NY, USA.

Multi-Path TCP – Linux Kernel Implementation. (n.d.).
http://multipathtcp.org

Muraki, Y., & Ito, Y. (2015). Study on effect of congestion control of
multipath TCP on WebQoE. In Proceedings of the IEEE 4th Global
Conference on Consumer Electronics (GCCE) (pp. 52-53). Osaka,
Japan.

Noda, K., & Ito, Y. (2018). Proposal of novel MPTCP congestion control
to suppress QoS fluctuation for WebQoE improvement. In Proceedings
of ICCE Berlin 2018.

Noda, K., & Ito, Y. (2019). Proposal of multi-path TCP packet scheduler
to adjust trade-off between QoS fluctuation and throughput for
WebQoE improvement. In Proceedings of the IEEE 4th International
Conference on Computer and Communication Systems (ICCCS) (pp.
493-496).

Postel, J. (1981). Transmission control protocol. IEEE RFC 793
(INTERNET STANDARD).

Raiciu, C., Handley, M., & Wischik, D. (2011). Coupled congestion control
for multipath transport protocols. IEEE RFC 6356 (Experimental).

Rizzo, L. (n.d.). Dummynet. http://info.iet.unipi.it/luigi/dummynet/
Stevens, W. R. (1997). TCP slow start, congestion avoidance, fast

retransmit, and fast recovery algorithm. RFC 2001.
Stewart, R. (2007). Stream control transmission protocol. IEEE RFC 4960

(Proposed Standard).
Welzl, M. (2005). Network congestion control: Managing internet traffic

(W. S. Kingdom, Ed.). John Wiley and Sons.

